First-order phase transitions in the square-lattice easy-plane J-Q model
نویسندگان
چکیده
منابع مشابه
Phase transitions in square-lattice dimer model with anisotropic interactions
In the early 1960s, Kasteleyn [1] and Temperley and Fisher [2] discussed the statistical mechanics for covering problem of graphs by dimers. In particular, the close-packed dimer models on planar graphs were revealed to be solved by Pfaffian method, so they have been recognized to be in a exactly solvable class. While dimers have obvious relevance to diatomic molecules adsorbed on surfaces, the...
متن کاملNematic phase in the J(1)-J(2) square-lattice Ising model in an external field.
The J(1)-J(2) Ising model in the square lattice in the presence of an external field is studied by two approaches: the cluster variation method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence of a new equilibrium phase, not previously reported for this model: an Ising-nematic phase, which shows orientational order but not positional order,...
متن کاملFirst order phase transitions and integrable field theory . The dilute q - state Potts model
First order phase transitions and integrable field theory. The dilute q-state Potts model Abstract We consider the two-dimensional dilute q-state Potts model on its first order phase transition surface for 0 < q ≤ 4. After determining the exact scattering theory which describes the scaling limit, we compute the two-kink form factors of the dilution, thermal and spin operators. They provide an a...
متن کاملOptimized broad-histogram simulations for strong first-order phase transitions: Droplet transitions in the large-Q Potts model
The numerical simulation of strongly first-order phase transitions has remained a notoriously difficult problem even for classical systems due to the exponentially suppressed (thermal) equilibration in the vicinity of such a transition. In the absence of efficient update techniques, a common approach to improve equilibration in Monte Carlo simulations is to broaden the sampled statistical ensem...
متن کاملQuantum first order phase transitions
The scaling theory of critical phenomena has been successfully extended for classical first order transitions even though the correlation length does not diverge in these transitions. In this paper we apply the scaling ideas to quantum first order transitions. The usefulness of this approach is illustrated treating the problems of a superconductor coupled to a gauge field and of a biquadratic H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2020
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.102.195135